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not reveal the anatomical distribution and relative frequency
of these populations3. One would anticipate that the putative-
ly osteogenic stromal cells would be those that lay closest to the
lining of endosteal osteoblasts. Scanning and transmission
electron microscopic studies in laboratory animals revealed
that the marrow and endosteal bone cells were each effective-
ly compartmentalized by an intervening condensed surface
layer of epithelial-like mesenchymal stromal cells which have
been called marrow sac cells4-5. These cells were uniformly thin
and attenuated with elongated nuclei, few small round mito-
chondria, and sparse rough endoplasmic reticulum. Because it
is well known that there are populations of mesenchymal stro-
mal cells in marrow which are preosteoblasts and bear
osteogenic cell markers, the sac cells on the outer surface of
the medullary compartment proximal to endosteal osteoblasts
might be an osteogenic reserve cell population.

In the present study, we have identified the human mar-
row sac cells, which separate the osteoblast cells from bone
marrow elements. The electron-microscopic morphology
and its expression of BMP-2, osteocalcin and ALP in culture
are described.
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Introduction

Bone marrow contains stromal mesenchymal cells that are
capable of differentiating into osteoblast cells, fibroblasts,
fibroendothelial cells, chondroblasts, adipocytes, and muscle
cells1. The differentiation process and mechanism are influ-
enced by multiple factors. Dexamethasone singularly
induces bone marrow stromal cells to differentiate into cells
exhibiting the osteoblast phenotype2.

While clonal techniques have shown that bone marrow stro-
mal cells comprise several physiologic populations that are not
equal in rate of growth and osteogenic activity, those studies do
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Materials and methods

Discarded tubular segments of femoral diaphyseal bone
were obtained from healthy young (4-8 yr) male and female
patients undergoing femoral shortening surgeries. The bone
fragments were 1.5-2.5 cm in length.

The samples were split longitudinally. In most cases, there
was a clean separation of marrow and bone. Free marrow
samples were fixed for 3-4 days in cold 0.08M sodium
cacodylate buffered 2% glutaraldehyde (pH 7.4). All speci-
mens were then postfixed in 1% osmium tetroxide, rinsed in
0.08M sodium cacodylate buffer, dehydrated in a graded
ethanol series, and critical point dried.

Scanning electron microscopy

Plugs from the bone marrow and bone samples were mount-
ed on SEM specimen studs and oriented to show the character
of the cells at their interface. The tissues were sputter coated
with a thin layer of gold, and they were examined in an S-
3500N scanning electron microscope (HITACHI, Ltd, Japan).

Transmission electron microscopy

Fixed marrow samples were cut into 1.0 mm3 blocks for
TEM investigation. They were fixed in glutaraldehyde for an
additional 24 hours, postfixed in 1% osmium tetroxide,
dehydrated, and embedded in Spurr epoxy resin by routine
technique. Transverse sections cut from the blocks were
stained with uranyl acetate and lead citrate, and examined in
an H-7500 TEM (HITACHI, Ltd, Japan).

Isolation of marrow sac cells

Fresh isolated intact marrow plugs were obtained, and
only the outer surface of bone marrow was gently pressed
several times against a dry, sterile, polysterene, 100 mm plas-
tic petrie dish (VWR, West Chester, PA) coated with poly-

Figure 1. SEM showing a segment of human femoral marrow (A
300X, B 1200X). The outer surface of the medullary compartment
is covered by a cellular sheet of flattened overlapping lobulate cells
(arrows).

Figure 2. TEM of a transverse section of human femoral marrow
showing that the marrow sac (arrowhead) was 1 (A 3000X) or 2
(B 12000X) cells thick, that the cells were attenuated with elon-
gated nuclei, few round mitochondria and appeared to display
intercellular gap junctions (filled arrow). The cells contained few
organelles and no basal laminae. The concentrations of collagen
fibrils (asterisks) were found in association with their deep
medullary surfaces. B detail of gap junctions between marrow
sacs and between marrow sac cell and bone marrow cell (filled
arrows).
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d-lysine to cover the entire surface with marrow sac cells
using the technique of touch imprint cytology6-7. Then, the
cells were cultured in ·-MEM (Atlanta Biologicals, Norcoss,
GA) containing antibiotics [penicillin (100U/ml), strepto-
mycin sulphate (100ug/ml)] and 10% fetal bovine serum
(FBS) (Atlanta Biologicals, Norcoss, GA) in a humidified
incubator at 37oC under an atmosphere of 5% CO2 and 95%
air. The medium was changed every other day.

After 10 days of culture, the adherent cells were collected
by trypsinizing with trypsin 0.05%-EDTA 0.53 mM in Hanks’
balanced salt solution without calcium and magnesium
(Atlanta Biologicals, Norcoss, GA) at 37oC for 5 min. and re-
suspended in ·-MEM with 10% FBS. The passages 4-8 were
used in this study. The cells were plated at a density of 5 x 103

cells/well and cultured for 7 days on glass coverslips coated
with Poly-d-lysine in 24-well plates using fresh medium with
or without dexamethasone (10-8 M), ‚-glycerophosphate (10
mM) and ascorbic acid (50 ug/ml) [DGPA]. Then the cells
were examined for the expression of alkaline phosphatase,
BMP-2 and osteocalcin.

Immunocytochemistry

The avidin-biotin-immunoperoxidase method was used by
following the manufacturer's procedure (Vectastain E Elite
ABC kit, Vector Laboratories, Inc. Burlingame, CA). The
expression of BMP-2 (monoclonal antibody h4b2/5.10.24,
Genetics Institute, MA) and osteocalcin (monoclonal anti-
body, Zymed Laboratories, Inc. CA) were examined.

The cells on cover slips were washed with cold phosphate
buffered saline (PBS), fixed in acetone for 10 minutes at -
20oC, washed with PBS and then treated with 0.3% H2O2 in
methanol for 30 minutes to deplete any endogenous perox-
idase activity. The cells were pre-incubated for 20 minutes
in diluted normal horse serum (3 drops of horse serum in 10
ml PBS) at room temperature. Subsequently, cells were
incubated with primary antibody (10 Ìg/ml in PBS)
overnight at 4ÔC, followed by secondary biotinylated horse
anti-mouse IgG (one drop of stock in 10 ml PBS) for 30
minutes at room temperature, and avidin-biotin-horserad-
ish peroxidase complex for 30 minutes at room tempera-
ture. After washing with PBS, cells were exposed to
diaminobenzidine (DAB) for 5 minutes and then counter-
stained with Harris' hematoxylin. Cells treated without the
primary antibody served as negative controls.

Alkaline phosphatase

The level of alkaline phosphatase activity was determined
using a commercial kit (Cat. # FBS-25, Sigma Chemical Co.
St. Louis, MO). The cells on cover slips were washed with
cold phosphate buffered saline, fixed in citrate buffered ace-
tone for 30 seconds at room temperature, washed with
deionized water, then exposed to alkaline-dye mixture and
incubated at room temperature for 30 minutes.

Results

Scanning electron microscopy

Endosteal bone surfaces were completely covered by a
hexagonally packed layer of plump osteoblasts. Their sur-
faces were studded with many tiny microvillar-like projec-
tions, and they displayed numerous intercellular cytoplasmic
processes. No osteoclast-like cells were identified.

The marrow myeloid elements were always invested in,
and separated from, the endosteal osteoblast lining by a con-
tinuum of flattened sac cells. In the SEM, the sac cells
appeared as flattened overlapping lobulate cells (Figure 1).
TEM preparations showed that the marrow sac was 1 or 2
cells thick, that the cells were attenuated with elongated
nuclei, and that they appeared to display intercellular gap
junctions (Figure 2). The cells contained few small round
mitochondria, few lysosomal bodies and filaments, and
sparse rough endoplasmic reticulum. Such cells lacked basal
laminae, but concentrations of collagen fibrils were found in
association with their deep medullary surfaces.

Figure 3. Immunocytochemical detection of BMP-2 in the human
marrow sac cells grown in basal medium (A) or medium with
DGPA (B) after 7 days of culture. The staining intensity increased
in cells grown in medium with DGPA. 160X.
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Immunocytochemistry and enzyme histochemistry

The question of whether marrow sac cells exhibit an
osteoblast-like character was approached immunocytochemi-
cally and histochemically. Cells cultured for 7 days in basal a-
MEM medium stained only weakly for BMP-2, ALP and osteo-
calcin (Figures 3-5A), but the expression of BMP-2 and ALP
was enhanced approximately 3-fold and 2-fold, respectively
when they were cultured in medium containing DGPA (Figure
3B, 4B). Osteocalcin levels remained unchanged (Figure 5B).

Discussion

The present study shows that the core of hemopoietic bone
marrow in the femurs of growing children is contained with-
in a condensed layer or sac of overlapping flattened cells. The
sac cells also lie subjacent to the osteogenic cells which line
the bony endosteum. Similar observations have been record-

ed in bone marrow from a number of commonly used labo-
ratory mammals and in pigeons4,5. However, differences do
exist in the organization and morphology of marrow sac cells
from different species. Rats, cats and sheep have a seamless
arrangement of marrow sac cells which resemble a thin, flat,
simple squamous epithelium with few intercellular cytoplas-
mic processes. The rabbit and pigeon sacs are composed of a
more woven, multilayered fabric of broadly elongated, flat,
fibroblast-like cells that display many intercellular processes.
In contrast, the cells in the human sac display a distinctive
pattern of overlapping lobular cells which, while they send off
few processes, are equipped with a conspicuous number of
gap junctions which are similar to the intercellular junctions
described by Yamazaki and Miller et al.8,9. Conventional wis-
dom suggests that they might be associated with the regula-
tion of intercellular calcium transport10 in response to hor-
monal, cytokine and electrochemical signals that determine
cell differentiation and co-ordinate metabolic activities11.
Otherwise, all marrow sac cells share a paucity of endoplas-
mic reticulum and organelles, such as mitochondria and lyso-
somal bodies. The architectural similarities between the
species suggest that, if there were differences in sac cell func-
tion, they might well be quite trivial.

The marrow sac cells expressed BMP-2 immunocytochemi-
cally. They also could be induced by DGPA to differentiate
into an osteoblastic phenotype by increasing expression of
BMP-2. The BMPs represent some 13 members of the TGF-‚
superfamily; they are characterized by the distinctive pattern of
seven cysteine residues in their carboxyl termini12,13. BMPs 2-12
have osteoinductive potential14-16. They are produced by bone
marrow stromal cells and osteoblasts, and stored in bone in an
inactive state. Immunocytochemistry has localized BMP to col-
lagen fibers in osteoid and mineralized bone17. BMPs also play
a role in embryogenesis, and have been shown to be expressed
by cells in developing limbs, lung, kidney, adrenal, and urinary
bladder and demonstrated to be associated with embryonic
morphogenesis18-20. Postnatally, however, their significance lies
in their capacity to mobilize osteoprogenitor cells, thereby pro-
moting the osteoblastic differentiation processes21. The origi-
nal in vivo studies, which showed that implants of BMP-rich
demineralized bone and dentine preparations could induce
cartilage-bone formation in situ, have now been confirmed
using recombinant human BMP preparations22. In vitro, vari-
ous osteoblastic cell lines and their mesenchymal progenitors
in bone marrow [ROB-C26, W-20-17] respond to rhBMP-2
and -4 by increasing their production of mineralizable bone
collagen and alkaline phosphatase and their cAMP signature
following PTH stimulation23. BMP-2 appears to acts in both an
autocrine and paracrine fashion to stimulate bone cell differ-
entiation and bone formation. Therefore, the marrow sac cells
expressing BMP-2 may play a role in bone formation in an
autocrine and/or paracrine manner.

Alkaline phosphatase is well known as a classical marker
of osteoblastic bone formation that reflects osteoblastic
activity, and as Turksen and others have affirmed, dexam-
ethasone induces the differentiation of AP-positive cells that

Figure 4. Expression of ALP in the human marrow sac cells grown
in basal medium (A) or medium with DGPA (B) after 7 days of
culture. Expression of ALP was enhanced while they were cultured
in medium containing DGPA. 160X.
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possess the ability to form mineralizable collagen nodules24-27.
Hauge et al.28 showed alkaline phosphatase is displayed by
osteoblasts and marrow lining cells, which are next to
endosteal osteoblasts in human cancellous bone. In the pres-
ent study, the marrow sac cells weakly expressed alkaline
phosphatase in culture. However, the expression of alkaline
phosphatase was strikingly elevated in medium containing
DGPA. The marrow sac cells could be induced to differenti-
ate into the osteoblastic cell lineage.

Osteocalcin, originally termed bone Gla-protein, is a
small non-collagenous protein that is specific for bone tissue
and dentin. Osteocalcin also may play an important regula-
tory role during osteoblast differentiation29-31. In the present
study, the marrow sac cells expressed osteocalcin in vitro sim-
ilar to that of marrow lining cells expressing osteocalcin in
vivo, reported by Hauge et al.28. The marrow sac cells might
change their metabolic state when they are activated at the
beginning of bone remodeling in vivo32.

The marrow sac cells separate the bone from marrow in
cortical bone. This structure is similar to that that Hauge et
al. described in cancellous bone28. The bone remodeling
compartment in cancellous bone is lined on its marrow side
by flattened cells, referred to as bone lining cells, and on its
osseous side by the remodeling bone surface28. And at some
areas, the bone surfaces are covered directly by bone lining
cells9,28 or capillaries which are associated with bone-forming
surfaces9,33 and osteogenesis during bone development and
bone remodeling34-38. The lining cells express the alkaline
phosphatase, osteocalcin, osteonectin28, IGFs, TGF‚, bFGF,
OPG and RANKL39-41. The levels of these markers vary with
the bone metabolic state. These osteoblast and osteoclast
differentiation factors might be associated with local regula-
tion of pre-osteoblast recruitment and osteoblast differenti-
ation. Conventionally, the cells close to osteoblasts are antic-
ipated to be pre-osteoblasts. These cells may be marrow sac
cells lining on the surface of bone marrow in trabecular and
cortical bone with an osteogenic potential or they may be the
population of cells most important to osteoblast renewal. In
in vivo studies, the marrow sac cells could be activated by
intermittent parathyroid hormone treatment43 or by
mechanical loading to form bone32. We show that the mar-
row sac cells express the osteoblast markers alkaline phos-
phatase, BMP-2, and osteocalcin in vitro, suggesting that
they have the bone cell phenotype.

In summary, in the present study, the marrow sac cells are
shown anatomically closest to the lining layer of endosteal
osteoblasts that actively form bone. Their morphology is that
of an attenuated cell with an elongated nucleus and few
organelles. These cells express ALP, BMP-2 and osteocalcin,
and can be induced to increase expression of ALP and BMP-
2 by DGPA. The marrow sac cells may represent an
osteogenic pool to recruit pre-osteoblasts, themselves differ-
entiate into osteoblasts and, in case, play an important role
in normal bone formation and bone diseases (osteoporosis,
osteopenia etc.).
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