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My laboratory’s work has focused on examining the role of
the Wnt signaling pathway in development and disease, with
a particular interest in the role of this pathway in bone9-12.
Wnts activate several signal transduction cascades upon
engaging their cognate receptors13-16. The Wnt pathway that
is frequently deregulated in human cancer, the so-called
"canonical" pathway, initiates a signal when a Wnt ligand
binds to a receptor complex containing a member of the friz-
zled family of seven-transmembrane receptors and either
low-density lipoprotein receptor-related protein 5 (LRP5) or
LRP614. This signal downregulates glycogen synthase kinase-
3 (GSK-3) activity17,18. Normally, GSK-3 phosphorylates ‚-
catenin, targeting it for ubiquitin-mediated degradation.
Inhibition of GSK-3 by Wnt signaling increases the level of
cytosolic ‚-catenin, which translocates to the nucleus and
activates target genes. This pathway can also directly activate
the mammalian target of rapamycin (mTOR)19. Mutations in
the Wnt co-receptors LRP5 and LRP6 produce striking
alterations in bone mass in both humans and mice. 

Osteoporosis pseudoglioma (OPPG) is a rare syndrome
associated with premature, generalized osteoporosis leading
to bone fracturing and progressive blindness. Inactivation of
LRP5 was identified as the causative genetic alteration
underlying OPPG20. LRP5 is expressed in osteoblasts, but
not in osteoclasts20,21; therefore, subsequent work has
focused on this cell type as the one in which LRP5 was
required to regulate normal bone development and/or
homeostasis. Additional support for the role of LRP5 in
bone growth was provided when two groups independently
reported that a point mutation in LRP5 (G171V) was pres-
ent in affected individuals of families displaying an autoso-
mally dominant high-bone-mass trait22,23. These two geneti-
cally independent families have bone density approximately
five standard deviations above that of unaffected family
members and the general population. Importantly, affected
individuals have a normal lifespan and only limited morbid-
ity associated with this mutation. The glycine normally at
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The ability to genetically manipulate the mouse has revo-
lutionized biomedical research. This is certainly the case in
the field of skeletal tissue research. The ability to create mice
carrying germline deletions has led to important insights into
gene function during skeletal development. Many recent
advances have been facilitated by the development of cre-lox
recombination systems. These allow for deletions of genes at
specific points in cell lineages and have been invaluable in
working out the requirements for genes during different
stages of osteoblast, chondrocyte, and osteoclast differentia-
tion. The cre-lox system was identified in bacteria in the early
1980s1. The P1 bacteriophage protein called cyclization
recombination (Cre) is 38 kDa and catalyzes recombination
between two of its sequence recognition (LoxP) sites. A loxP
(locus of X-over P1) site is a 34-base-pair consensus sequence
containing a core domain of 8 base pairs flanked on each side
by a 13-base-pair palindrome sequence2. Cre-mediated
recombination results in the elimination of sequences flanked
by the loxP sites. The utility of this system in eukaryotic cells
was first demonstrated in the late 1980s3-5, and further confir-
mation of its activity in transgenic mice was shown in 19926,7.
This has led to the development of numerous mouse strains
in which essential portions on the gene are flanked by loxP
sites (so-called "floxed" strains). If the floxed alleles are prop-
erly designed, Cre-mediated recombination leads to the cre-
ation of a null gene in a specific tissue or cell type. Numerous
cre-expressing strains have been developed to facilitate study-
ing components of the mouse skeleton8.
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position 171 in the LRP5 protein lies within the fourth blade
of the first six-bladed ‚-propeller24. The G171V mutation
does not directly increase signaling activity; instead it
inhibits the ability of Dkk1, Sclerostin, and potentially other
proteins to bind LRP5/6 and inhibit Wnt signaling25. In addi-
tion, it may interfere with Mesd binding and transit of LRP5
to the cell surface, facilitating increased autocrine signaling
within the endoplasmic reticulum26. Numerous other alter-
ations in human LRP5 have subsequently been identified
and correlated with changes in bone mass27. Mutations in
LRP6 have also been linked to changes in bone mass in
humans. Members of a family in which a putative partial
loss-of-function mutation in LRP6 was identified were pre-
disposed to early cardiovascular-related death (associated
with dramatically elevated levels of plasma LDL and triglyc-
erides, hypertension, diabetes, and osteoporosis28. In addi-
tion, several mutant mouse models with targeted or sponta-
neous point mutations in LRP6 have been found to have
altered bone development10,29,30.

Consistent with other reports31, we have found that mice
carrying a conditional deletion of ‚-catenin in mature
osteoblasts developed severe osteopenia accompanied by
increased osteoclastogenesis11. We also know that LRP5-
deficient mice have low bone mass but are viable and fertile
and do not exhibit alterations in osteoclast function10,21,29,32,33.
One potential explanation for these differences is that the
highly related LRP6 might exert overlapping, or distinct,
roles in bone development. Consistent with this, we found
that mice carrying global mutations in both LRP5 and LRP6
display synergistic deficiencies in bone mass10. However,
since these mutations were present in all cells, it did not
allow us to unambiguously determine that the defects were
due to altered osteoblast regulation. To address this, we cre-
ated mice carrying a conditional allele of LRP6 (LRP6flox).
The generation of mice expressing Cre driven by the human
osteocalcin promoter (OC-creTG/+)34 and homozygous for the
LRP6flox allele has revealed that such mice have significantly
low bone mass, demonstrating that LRP6 is required for the
normal bone acquisition. When the OC-creTG/+;LRP6/flox/flox

mice are mated with mice globally deficient in LRP5, the
OC-creTG/+;LRP6/flox/flox;LRP5ko/ko offspring develop severe
osteopenia and essentially phenocopy mice lacking ‚-catenin
in osteoblasts (OC-creTG/+;‚-cateninflox/flox mice); the mice die
within four weeks of birth with severe osteopenia associated
with reduced bone formation and increased bone resorption.
This suggests that both LRP5 and LRP6 are required to fully
activate ‚-catenin in mature osteoblasts.

Previous studies have shown that loss of ‚-catenin in mes-
enchymal progenitors leads to excess chondrocyte formation
at the expense of osteoblastogenesis, while activation of ‚-
catenin leads to the reciprocal phenotype35-37. We have exam-
ined the role of LRP5 and LRP6 at these early developmen-
tal stages by gene deletion mediated by the Dermo1-Cre trans-
gene. OC-creTG/+-LRP6flox/’flox mice are viable and fertile, how-
ever, DEXA analysis reveals a significant reduction of bone
mass (approximately 10%) by 3 months of age. Preliminary

analysis finds that Dermo-TG/+-LRP6flox/flox;LRP5ko/ko do not sur-
vive embyrogenesis and have a number of abnormalities.

In summary, our work provides clear evidence for a role
of LRP6 in regulating osteoblast differentiation and/or func-
tion. We have also found that LRP5 and LRP6 play overlap-
ping roles in both early and late stages of osteoblast differ-
entiation. 
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