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rosis complex) which is a heterodimeric complex of the
TSC1 and TSC2 gene products, hamartin and tuberin,
respectively. Studies have shown that the TSC1/TSC2 het-
erodimer regulates cell growth and cell proliferation as a
downstream component of the PI3K (phosphoinositide 3-
kinase)-Akt signaling, which modulates signal transduction
through mTOR. Cells null for TSC1 or TSC2, cells depleted
of TSC1 or TSC2 by RNA interference, and human and
mouse tissues deficient in TSC1 or TSC2, all have high
mTOR activity, as measured by S6K1 phosphorylation15.
Together with its partner TSC1, TSC2 functions as a GAP
(GTPase activating protein) for a small G protein named
Rheb (Ras homolog enriched in brain).

Phosphorylation of TSC2 is thought to inhibit its GAP
activity, allowing Rheb to accumulate in its active GTP-
bound form. GTP-bound Rheb strongly stimulates mTOR
activity and TSC2 functions to inactivate Rheb by increasing
the intrinsic rate of GTP hydrolysis on Rheb10,11,15.

Recently, two hypoxia-induced genes, termed Scylla and
Charybdis, were identified in Drosophila from a genetic
screen for negative regulators of the dTOR pathway16. In
mammals, these genes are named REDD1 and REDD2
(mammalian orthologs of Scylla and Charybdis, also called
RTP801/DDIT4 and RTP801L/DDIT4L, respectively) and
have been shown to inhibit mTOR kinase activity. Previous
studies have indicated that REDD1 is ubiquitously
expressed and is essential for the down-regulation of mTOR
activity by hypoxia, dexamethasone treatment and/or cellular
energy stress17-19. The regulation and function of REDD2 is
less well known but of interest because REDD2 has previ-
ously been shown to be highly induced in response to skele-
tal muscle unloading, a model of muscle atrophy, and asso-
ciated with diminished mTOR activity.

The goal of this talk will be to present research highlight-
ing the specificity of mechanical signaling of mTOR signaling
in skeletal muscle, to evaluate the contribution of the
TSC1:TSC2 complex in mediating mTOR activity and pres-
ent evidence demonstrating the role of REDD2 in negatively
regulating mTOR signaling in mammalian skeletal muscle.
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Growth and maintenance of skeletal muscle mass is criti-
cal for long-term health and quality of life. Studies of exer-
cise in vivo and stretch in vitro have established that mechan-
ical loading of muscle cells induces growth1-3. This growth is
characterized by increases in fiber cross-sectional area, total
protein content and total RNA content. One cellular
response that has been studied in both systems is the rate of
protein synthesis3-5. These studies have shown that following
one bout of exercise/stretch, rates of protein synthesis are
elevated for hours after the bout. Previous studies have
demonstrated that signaling through mTOR in skeletal mus-
cle is critical for regulation of protein synthesis and is neces-
sary for growth both in vivo and in vitro6-9. While this obser-
vation is well accepted, there is still very little understood
about the specific upstream signaling mechanisms regulating
mTOR activity required for growth.

mTOR is a serine/threonine kinase of the phosphatidyli-
nositol kinase-related kinase family, it is highly conserved
from yeast to mammals and is expressed in all cell types10,11.
Studies have established that mTOR functions as a central
integrator of growth and differentiation in muscle cells,
osteoblasts and chondrocytes. Regulation of mTOR is most
well defined in response to nutrients, such as amino acids,
and growth factors such as IGF110,11. In skeletal muscle, acti-
vation of mTOR signaling is also induced by mechanical
strain via an intracellular pathway different to growth fac-
tors12-14. While the mTOR pathway has been demonstrated
to be a critical mediator of muscle hypertrophy there is still
little known about the intracellular mechanisms regulating
its activity.

Upstream of mTOR is the TSC complex (tuberous scle-
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